Development of a Gas Stopper for Fusion-Evaporation Products

Cyclotron Institute, Texas A&M University Jordan Sefcik, Angelo State University Dr. Charles M. Folden III, Marisa Alfonso

Outline

Introduction

- Creation of fusion-evaporation products
- > Proposed Experimental Set-up
- > Gas Stopper
- Simulation Results
 - > LISE
 - > SIMION
- Onclusion
- Future Work
- Acknowledgements

Introduction

 My research focuses on ¹⁵⁸Hf, which is a homolog of ²⁵⁷Rf

• Why do we care about Rf?

Image: Product of the second secon	1	n		- 5		1.5					1.5	100	17	1.5	100	1.7			
H H H H 111 10000 10000 1000 1000 <td>nydrogen 1</td> <td></td> <td>nelium 2</td>	nydrogen 1																		nelium 2
Image: Normal state	Lú.																		LÎ.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	п																		пе
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0079	boryllium	i											boron	earbon	nitrogen	opgan	fluorino	4.0026
Li Be 0.012 300m Ch N O F Nee 10.007 2.000 11.007 10.007 1	3	4												5	6	7	8	9	10
Li Dig solutini 11 Dig solutini 12 Ci N O F NUE Solutini 12 Na Mage	1.1.1	Ro												D	C	N	0	C	No
and m boltz boltz <th< td=""><td>l de l</td><td>De</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D</td><td>C</td><td>IN</td><td>U</td><td>Г</td><td>ING</td></th<>	l de l	De												D	C	IN	U	Г	ING
11 12 13 14 15 16 17 18 2000 24.305 20.001 32.065 42.055	6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20,180 argon
$\frac{Na}{19} \frac{Ng}{29.99} \frac{N}{24.305} \frac{N}{19} \frac{N}{20} \frac{N}{24.305} \frac{N}{19} \frac{N}{20} \frac{N}{21} \frac{N}{22} \frac{N}{23} \frac{N}{24} \frac{N}{25} \frac{N}{25} \frac{N}{24} \frac{N}{25} \frac{N}{2$	11	12												13	14	15	16	17	18
$\frac{1}{92,300} + \frac{1}{90,301} + \frac{1}{92,300} + \frac{1}$	Na	Ma												ΔΙ	Si	P	S	CL	Δr
$\frac{1}{12} \frac{1}{223} \frac{1}{12} \frac{1}{12} \frac{1}{22} \frac{1}{22} \frac{1}{22} \frac{1}{23} \frac{1}{22} \frac{1}{22} \frac{1}{23} \frac{1}{22} \frac{1}{22} \frac{1}{23} \frac{1}{22} \frac{1}{22} \frac{1}{22} \frac{1}{23} \frac{1}{22} \frac{1}{23} \frac{1}{22} \frac{1}{23} \frac{1}{22} \frac{1}{23} \frac{1}{23} \frac{1}{22} \frac{1}{23} $	23,000	24.205												26,000	20,000	20.074	22.055		20.040
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
K Ca 30.094 Sc 13.99 Ti V Cr Mn Fee Co Ni Cu Zn Ga Ge As Se Br Kr 101ddum 30.078 470.078 470.078 50.942 51.966 101.07 100.041 patients 65.36 65.39 60.723 171.02 73.86 Br Kr 101ddum 39 40 41 42 43 44 45 446 47 cd 10 attimum totum 10 attimum 10 attimum 40.078 112.24 118.27 112.76 127.60 137.00 <td>19</td> <td>20</td> <td></td> <td>21</td> <td>22</td> <td>23</td> <td>24</td> <td>25</td> <td>26</td> <td>27</td> <td>28</td> <td>29</td> <td>30</td> <td>31</td> <td>32</td> <td>33</td> <td>34</td> <td>35</td> <td>36</td>	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
$\frac{30,096}{1048dm} \frac{40,078}{380dlm} \frac{40,078}{380dlm} \frac{44,956}{1080dlm} \frac{47,977}{1080dlm} \frac{60,942}{1040dlm} \frac{51,966}{100dlm} 51,966$	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	39.098	40.078		44.956	47.867	50.942	51,996	54,938	55.845	58,933	58,693	63,546	65.39	69,723	72.61	74,922	78.96	79.904	83.80
$\frac{37}{12291} + \frac{33}{1229} + \frac{339}{1229} + \frac{40}{12891} + \frac{41}{1491} + \frac{42}{12} + \frac{43}{14} + \frac{44}{15} + \frac{44}{15} + \frac{46}{16} + \frac{47}{16} + \frac{43}{16} + \frac{49}{16} + 4$	rubidium	strontium	1	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\frac{85.488}{caestum} \frac{87.62}{bartum} \frac{88.996}{bartum} \frac{91.224}{tutelium} \frac{92.996}{tutelium} \frac{95.44}{tutelium} \frac{99.54}{tutelium} \frac{99.54}{tut$	Rb	Sr		Y	Zr	Nb	Mo	IC	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	le		Хе
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
$\frac{1}{35} \frac{1}{37} \frac{1}{33} \frac{1}{37} \frac{1}{174} \frac{1}{196} \frac{1}{190.95} \frac{1}{196.21} \frac{1}{192.22} \frac{1}{192.22} \frac{1}{192.22} \frac{1}{195.08} \frac{1}{196.97} \frac{1}{196.97} \frac{2}{201.38} \frac{1}{2} \frac{1}{201.38} \frac{1}{2} \frac{1}{204.38} \frac{1}{106} \frac{1}{107} \frac{1}{108} \frac{1}{107} \frac{1}{108} \frac{1}{1269} \frac{1}{1269} \frac{1}{1269} \frac{1}{1269} \frac{1}{1271} \frac{1}{1271} \frac{1}{1271} \frac{1}{1271} \frac{1}{1289} \frac{1}{1261} \frac{1}{1261$	caesium 55	barium	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 7/	rhenium 75	osmium 76	iridium 77	platinum 78	gold 70	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
$\frac{ c }{ c } \frac{ c }{ c } c$	0-	De		1.1	112	Ť	10/	De	0-	i.	D4	A		TI	DL	D:	D _n	A 1	D
137.33 174.97 178.49 180.95 182.84 190.23 192.22 195.08 201.35 201.38 207.2 208.98 1209 [210] [222] franctum 87 88 89-102 103 104 105 Sg Bh Hs Mt Uun Uunuluum ununubum ununubum ununubum ununubum 114 Uunquadum 128 146.01 160.01 161.01 162.01 127.01 127.01 128.91 140.12 140.12 140.12 140.12 166.01 161.01 161.01 161.01 161.01 161.01 161.01 161.01 161.01 161.01 161.01 161.01 161.01 <	LS	ва	*	LU	HI	Ia	VV	ĸe	US	Ir	Ρτ	AU	нg		PD	ы	PO	At	Rn
$\frac{ a a a a }{ b } = \frac{ a a a a }{ b } = \frac{ a a a a }{ b } = \frac{ a a a a a a }{ b } = \frac{ a a a a a a a }{ b } = a a a a a a a a a a a a a a a a a a a$	132.91 francium	137.33 radium		174.97	178.49	180.95 dubnium	183.84 conborgium	186.21 bobrium	190.23 bassium	192.22 moite orium	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
FrRa* *LrRfDbSgBhHsMtUunUunUunUunUun233123314012140111401414014140141401414014140141401414014* Lanthanide series* Actinide series9091929394959697989910010110190919293949596979899100101102920423042304230412341234124312431243124312411241	87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Image: Note of the series A & A & Li & Ki & Dib & Sg & Bit & RS & Nite & Out in Ou	Er	Da	¥ ¥	1 m	Df	Dh	Sa	Rh	Цc	N/I+	Hum	I In ma	Ilub		Ilua				
* Lanthanide series Ianthanum cerium prosectymium recetymium recetym		ina				DD	Sy	ы	115	IVIL	oun	ouu	oup		ouq				
*Lanthanide series *Actinide series	223	226		262	[261]	262	266	264	269	[268]	271	272	277		[289]	l.			
*Lanthanide series * Actinide series																			
* Lanthanide series * * Actinide series																			
*Lanthanide series *Actinide s				lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dvsprosium	holmium	erbium	thulium	vtterbium		
**Actinide series La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb **Actinide series 140.12 140.91 144.24 1149 150.36 151.96 157.25 158.93 162.50 164.93 167.26 166.93 173.04 **Actinide series 99 90 91 92 93 94 95 96 97 98 99 100 101 102 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 727 23.04 23.04 23.03 12.41 12	*Lant	hanide	series	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
**Actinide series **Actinide series	Lant	nunuu	501105	la	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Th	Dv	Ho	Fr	Tm	Yh		
**Actinide series **Actinide series The first intervent in the first intervent inter				138.01	140.12	140.91	144.24	11/151	150.36	151.96	157.25	158.02	162.50	164.92	167.26	168.92	173.04		
**Actinide series 89 90 91 92 93 94 95 96 97 98 99 100 101 102 AC Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 1227 23 04 23 04 23 04 23 03 123 123 124 1243 1243				actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium		
AC TH PA U NP PU AM CM Bk Cf Es Fm Md No	* * Act	inide s	eries	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
[227] 232 0.4 231 0.4 238 0.3 [237] [244] [243] [247] [247] [247] [247] [257] [257] [257] [258] [259]				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
				[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

Creation of Fusion-Evaporation Products

- Projectile + Target → Compound Nucleus →
 Evaporated Residue + Ejectile
 - > $^{50}\text{Ti} + ^{112}\text{Sn} \rightarrow ^{162}\text{Hf}^* \rightarrow ^{158}\text{Hf} + 4n$

 These nuclear reactions have a low probability (<10⁻⁸%)

Physical Pre-separation

- Momentum Achromat Recoil Separator (MARS) will filter out unwanted products and beam
- Main components of my simulations: variable angle degrader, Reaction Transfer Chamber (RTC) window, & helium gas cell

Proposed Experimental Set-up

MSU Gas Stopper

- Thermalize ions
- Original design from MSU: 50 cm in length
- Designed for lighter, faster ions
- 4 concentric spherical electrodes (flower petals)

L.Weissman, et al. Nucl. Instr. and Meth. A. 540 (2005) 245-258.

Our Proposed Gas Stopper

- Our design, adapted from MSU: 13.5 cm in length
- Optimized for heavier, slower ions
- 4 flower petals like original design
- Voltage decreases across the gas stopper

LISE

- Simulates motion of ions through separator
- Factors that were optimized:
 - > Degrader thickness & angle
 - > RTC window thickness
 - > Gas cell pressure
- Ion energy and spatial distribution after RTC window

Projectile 5 4.46 MeV/u 30 Compound 1 Residual 1	0Ti ¹¹⁺) pnA 62Hf 58Hf ²⁴⁺²⁴⁺	
T Target	Sn 0.47 mg/cm2	
ST Stripper	C 0.05 mg/cm2	
D1 -50 H +50 -50 V +50	Brho 0.5757 Tm	>
S Slits #2 Coffin -80 H +80 -50 V +50	slits	.00
D2 -100 H +100 -50 V +50	Brho 0.5757 Tm	
Hiter -100 H +100 -50 V +50	E 70 KV/m B 82.97 G DL 2.16 mm/%	
-30 H +30 -20 V +20	Br 0.5757 Tm A 5 deg DG 0 mm/%	8
S 🔲 Slit #4 Det	standard 0.5757 Tm	
M Degrader	H8C10O4 8.55118 micron	
M RTC Window	H8C10O4 2 micron	
M I Helium Gas	He	~

Location Distribution after RTC Window

Vertical Distribution

Horizontal Distribution

Mean: 0 mm, σ: 17 mm

Mean: 0 mm, σ: 21 mm

Energy Distribution after RTC Window

- ¹⁵⁸Hf is produced with ~58 MeV of kinetic energy
- 7.75 µm mylar degrader @ 25° effective thickness: 8.5 µm
- 2 µm RTC window

SIMION

- Ion simulation program that calculates electric fields and trajectories of ions for those electric fields
- Ion energy and spatial distribution determined by LISE
- Mobility: $(17.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^1)$ [1]
- Gas flow: 11.5 mm/sec in beam direction
- Collisions with He
- SRIM range of ¹⁵⁸Hf in
 0.3 atm of He

Scaling Electric Potentials

High survival rate & low kinetic energy is needed
3 different simulations

Difference between RTC Window and 1st Ring

 Different voltages tested to determine best scenario

Forward push is needed

Survival vs. Difference in Voltage

Stopped by 1st Electrode

• Too many ions stopped by 1st electrode

Not Enough Petal Focusing

• Lack of petal focusing

Addition of 5th Petal

5 Ring

98% Survival

Need for all 5 Rings?

0.143 eV average kinetic energy

Eliminating 2 Rings

3 Ring Makes the cell smaller 96% Survival

0.146 eV average kinetic energy

Difference between RTC Window and 1st Electrode

Like before, less of a difference proves to be better.

Survival vs. Difference between RTC Window and 1st Ring

Conclusions

 An RTC window voltage was optimized at 710 V, then decreased down the length of the stopper

 Can decrease ions from ~3 MeV to ~0.14 eV in just 115.5 mm

 Ion spatial distribution decreased vertically from 17 mm to 1.5 mm and horizontally from 21 mm to 1.8 mm

3 ring electrodes is sufficient in steering the ions

Future Work

 Further simulate the gas cell for other similar elements, such as zirconium

Fabricate and test the gas cell

More sophisticated gas flow

• Charge exchange

Acknowledgements

- National Science Foundation
- Operation of Energy
- Texas A&M Cyclotron Institute
- Dr. Sherry Yennello

Special thanks to my advisor, Dr. Folden, and my graduate student mentor, Marisa Alfonso

